Scatter correction for 3D PET using beam stoppers combined with dual-energy window acquisition: a feasibility study.

نویسندگان

  • Jay Wu
  • Keh-Shih Chuang
  • Ching-Han Hsu
  • Meei-Ling Jan
  • Ing-Ming Hwang
  • Tzong-Jer Chen
چکیده

Fully three-dimensional (3D) positron emission tomography (PET) can achieve high sensitivity of coincidence events, but the absence of inter-slice septa inevitably leads to increased scattered events. The scattered events can represent as much as 50% of the total detected events. In this research, we proposed a scatter correction method for 3D PET based on beam stoppers and dual-energy window acquisition. The beam stoppers were placed surrounding the object to attenuate primary beams. The scatter fractions were directly estimated at those blocked lines of response and then the entire scatter fraction distribution was recovered using the dual-energy window ratio as reference. The performance was evaluated by using Monte Carlo simulations of various digital phantoms. For the Utah phantom study, the proposed method accurately estimated the scatter fraction distribution, and improved image contrast and quantification based on four different quality indices as performance measures. For the non-homogeneous Zubal phantom, the simulated results also demonstrated that the proposed method achieved a better restoration of image contrast than the dual-energy window method. We conclude that the proposed scatter correction method could effectively suppress various kinds of scattered events, including multiple scatter and scatter from outside the field of view.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation and patient studies of scatter correction in cardiac SPECT imaging

Introduction: Myocardial perfusion imaging is a nuclear medicine imaging method that is used to detect coronary artery diseases. One of the main sources of error in this imaging method is the detection of Compton scattered photons in the photopeak energy window used for data acquisition. This results in the degradation of the image contrast, and therefore decreases the...

متن کامل

Validation of a simplified scatter correction method for 3D brain PET with 15O

OBJECTIVE Positron emission tomography (PET) enables quantitative measurements of various biological functions. Accuracy in data acquisition and processing schemes is a prerequisite for this. The correction of scatter is especially important when a 3D PET scanner is used. The aim of this study was to validate the use of a simplified calculation-based scatter correction method for 15O studies in...

متن کامل

Evaluation of Simultaneous Dual-radioisotope SPECT Imaging Using 18F-fluorodeoxyglucose and 99mTc-tetrofosmin

Objective(s): Use of a positron emission tomography (PET)/single-photonemission computed tomography (SPECT) system facilitates the simultaneousacquisition of images with fluorine-18 fluorodeoxyglucose (18F-FDG) andtechnetium (99mTc)-tetrofosmin. However, 18F has a short half-life, and 511keV Compton-scattered photons are detected in the 99mTc energy window.Therefore, in this study, we aimed to ...

متن کامل

Quantification of cerebral blood flow and oxygen metabolism with 3-dimensional PET and 15O: validation by comparison with 2-dimensional PET.

UNLABELLED Quantitative PET with (15)O provides absolute values for cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral metabolic rate of oxygen (CMRO(2)), and oxygen extraction fraction (OEF), which are used for assessment of brain pathophysiology. Absolute quantification relies on physically accurate measurement, which, thus far, has been achieved by 2-dimensional PET (2D PET), t...

متن کامل

Determination of the Energy Windows for the Triple Energy Window Scatter Correction Method in Gadolinium-159 Single Photon Emission Computed Tomography Using Monte Carlo Simulation

Introduction: In radionuclide imaging, object scatter is one of the major factors leading to image quality degradation. Therefore, the correction of scattered photons might have a great impact on improving the image quality. Regarding this, the present study aimed to determine the main and sub-energy windows for triple energy window (TEW) scatter correction method usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 50 19  شماره 

صفحات  -

تاریخ انتشار 2005